
Intel® Processor Graphics:
Architecture & Programming

Jason Ross – Principal Engineer, GPU Architect

Ken Lueh – Sr. Principal Engineer, Compiler Architect

Subramaniam Maiyuran – Sr. Principal Engineer, GPU Architect

2

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

3

Compute Applications

Compute Applications Optimized for Intel® Processor Graphics

“The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor
are … allowing me to do all of this while the graphics and video
never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe

Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor
are … allowing me to do all of this while the graphics and video
never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe

Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“We are very pleased that Intel is fully supporting OpenCL.
We think there is a bright future for this technology.” Michael

Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony*
Optimized with OpenCL and Intel® Processor Graphics
http://www.youtube.com/watch?v=_KHVOCwTdno

“We are very pleased that Intel is fully supporting OpenCL.
We think there is a bright future for this technology.” Michael

Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony*
Optimized with OpenCL and Intel® Processor Graphics
http://www.youtube.com/watch?v=_KHVOCwTdno

“Implementing [OpenCL] in our award-winning video editor,
PowerDirector, has created tremendous value for our
customers by enabling big gains in video processing speed
and, consequently, a significant reduction in total video
editing time.” Louis Chen, Assistant Vice President, CyberLink Corp.

“Implementing [OpenCL] in our award-winning video editor,
PowerDirector, has created tremendous value for our
customers by enabling big gains in video processing speed
and, consequently, a significant reduction in total video
editing time.” Louis Chen, Assistant Vice President, CyberLink Corp.

"Capture One Pro introduces …optimizations for Haswell, enabling
remarkably faster interaction with and processing of RAW image files,
providing a better experience for our quality-conscious users.”

"Capture One Pro introduces …optimizations for Haswell, enabling
remarkably faster interaction with and processing of RAW image files,
providing a better experience for our quality-conscious users.”

*

*

*

*

*

*

DirectX11.2
Compute Shader
DirectX11.2
Compute Shader*

4

Processor Graphics is a Key Intel Silicon
Component

4

Intel® 5th Gen Core™Intel 3rd Gen Core™

Intel HD
Graphics

Intel 2nd Gen Core™

Intel HD
Graphics

Intel® 4th Gen Core™

Intel HD
Graphics

eDRAM

eDRAM

Processor
Graphics Gen7

Processor
Graphics Gen6

Processor Graphics Gen7.5 Processor Graphics Gen8

Intel Iris
Graphics

Gen9 

5

Intel® Core™ i5 with Iris graphics 6100:

Intel® Processor Graphics?
• Intel® Processor Graphics: 3D Rendering,

Media, Display and Compute

• Discrete class performance but… integrated
on-die for true heterogeneous computing,
SoC power efficiency, and a fully connected
system architecture

• Some products are near TFLOP performance

• The foundation is a highly threaded, data
parallel compute architecture

• Today: focus on compute components of
Intel Processor Graphics Gen9

Intel Processor Graphics is a key Compute Resource

6

Compute Programming model Support
• APIs & Languages Supported

- Microsoft* DirectX* 12 Compute Shader

 Also Microsoft C++AMP

- Google* Renderscript

- Khronos OpenCL™ 2.0

- Khronos OpenGL* 4.3 & OpenGL-ES 3.1 with GL-Compute

- Intel Extensions (e.g. VME, media surface sharing, etc.)

- Intel CilkPlus C++ compiler

• Processor Graphics OS support:

- Windows*, Android*, MacOS*, Linux*

Intel® Processor Graphics
Supports all OS API Standards for Compute

OpenCL

DirectX12, 11.2
Compute Shader

DirectX12, 11.2
Compute Shader

7

Apple Macbook Pro 13’’

Apple* Macbook* Pro 15’’

Apple iMac* 21.5’’
Asus Zenbook Infinity*

Gigabyte* Brix* Pro

Zotac* ZBOX* EI730

Sony* Vaio* Tap 21

JD.com – Terran Force
Clevo* Niagara*

The Graphics Architecture for many OEM DT, LT, 2:1, tablet products

Example OEM Products w/ Processor Graphics

Microsoft* Surface* Pro 4

Asus MeMO* Pad 7*

Asus* Transformer Pad*

Lenovo* Miix* 2

Toshiba* Encore* 2 Tablet

8

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

9

General Purpose Compute Evolution

• Superscalar – 1990s

• Multi-core – 2000s

• Heterogeneous – 2010s+

10

CPU

Super Scalar Era (1990s)

• 1st PC Example: i486 (1989)

• Exploits ILP (Instruction Level Parallelism)

• ILP limited by compiler’s ability to extract parallelism

• DLP (Data Level Parallelism) introduced: MMX SIMD instructions on Pentium in 1996

• Note: the pipelines themselves were heterogeneous (INT vs. FP)

INTINT INTINT INTINT FPFP FPFP

11

Multi Core Era (2000s)

• 1st PC Example: Pentium D (2005)

• Exploits TLP (Thread Level Parallelism)

• TLP limited by Amdahl’s law, and serial nature of some routines

• Diminishing returns past 4 Cores / 8 Threads

• Homogenous cores

CPU0 CPU1 CPU2 CPU3

12

Heterogeneous Computing Era (2000s+)

• Uses the most power efficient compute engine for a given job

• Maturity of domain specific computing: most noticeably the GPU

• Continued GPU hardware and OpenCL software improvement for data parallel computing

• Technologies to simplify the programming model start to emerge: SVM (Shared Virtual
Memory) and OS management

CPU0 CPU1

CPU2 CPU3

GPU

Media

ISP

Audio

Etc

13

Who’s Better For The Job?

14 14

Heterogeneous Systems have been broadly
deployed in Client Computers for many years

http://images.dailytech.com http://www.gigabyte.com

• Intel 4th Generation i7 Core with Iris Pro graphics and 128MB eDRAM
• Up to 1 TFLOPS delivered when CPU and GPU is combined

• Example: Featured in Gigabyte’s Brix Pro GB-BXi7-4770R

15

Example Chip Level
Architecture: Intel® 7th Gen
Core™ Processor

16

Complimentary Computing Engines

• Different micro-architectural approaches

ILP
DLP
TLP

ILP

DLP
TLP

CPU GPU

17

Intel Processor Core Tutorial
Microarchitecture Block Diagram

17

ALU, SIMUL,

DIV, FP MUL

ALU, SIALU,

FP ADD

ALU, Branch,

FP Shuffle

Load Load

Store Address Store Address

Store

Data
Execution Ports

32k L1 Instruction Cache

Scheduler

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

32k L1 Data Cache

48 bytes/cycle

Allocate/Rename/RetireZeroing IdiomsLoad
Buffe
rs

Store
Buffe
rs

Reord
erBuff
ers

L2 Data Cache (MLC) Fill
Buffers

Pre decode
Instruction

Queue
Decoders

1.5k uOP cache

DecodersDecodersDecoders

Branch Pred

In
order

Out-
of-
order

Front End
(IA instructions  Uops)

In Order Allocation, Rename, Retirement

Out of Order “Uop” Scheduling

Data
Cache
Unit

* Adapted from ARCS001, IDF Beijing 2011.

18

Microarchitecture Highlights

• ILP: Many issue slots for OOO
execution

• DLP: More SIMD compute
supported by increased Cache
bandwidth

• TLP: Up to 4 cores, 8 threads (remains the
same)

Micro-
architecture

Instruction Set SP FLOPs per
cycle per core

DP FLOPs per
cycle per core

L1 Cache
Bandwidth
(Bytes/cycle)

L2 Cache
Bandwidth
(Bytes/cycle)

Nehalem SSE

(128-bits)

8 4 32 (16B read + 16B
write)

32

Sandy Bridge AVX

(256-bits)

16 8 48 (32B read + 16B
write)

32

Haswell AVX2

(256-bits)

32 16 96 (64B read + 32B
write)

64

U
n

if
ie

d
 R

e
se

rv
a

ti
o

n
 S

ta
ti

o
n

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Integer ALU, FMA, FP Multiply, Divide,
Branch, SSE Integer ALU/Integer

Multiply/Logicals/Shifts

Integer ALU, FMA, FP Add/Multiply, Slow
Integer, SSE Integer ALU,/Logicals

Load/Store Address

Load/Store Address

Store Data

Integer ALU, FP/INT Shuffle, SSE
Integer ALU/Logicals

Integer ALU, Branch

Store Address

19

Complimentary Computing Engines

• Different micro-architectural approaches

ILP
DLP
TLP

ILP

DLP
TLP

CPU GPU

20 20

DLP and TLP in Processor Graphics

DLP:

• Large register files reduce cache and memory
burden and improve compute power efficiency

TLP:

• Many hardware thread contexts per core (EU)
and many cores

• Highly efficient thread generation, dispatch,
monitoring mechanism

ILP

DLP
TLP

GPU

21

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

22

Intel® Core™ i7 processor 6700K (desktop)

22

Processor Graphics
scales to many SoC
Chip products, wide
range product
segments:

Server, desktop, laptop,
convertible, tablet, phone

23

Multi-slice Product Configuration Examples

24 EUs 48 EUs12 EUs

24

3 Slice Product Configuration

24

72 EUs

25

Chip Level Architecture
• Many different processor

products, with different
processor graphics configs

• Multiple CPU cores, shared
LLC, system agent

• Multiple clock domains,
target power where it’s
needed

New!

26

Chip Level Architecture • Ring Interconnect:

- Dedicated “stops”: each CPU Core,
Graphics, & System Agent

- Bi-directional, 32 Bytes wide

• Shared Last Level Cache (LLC)

- Both GPU & CPU cores

- 2-8MB, depending on product

- Inclusive

• Optimized for CPU & GPU
coherency

- Address hashing to multiple
concurrent LLC request queues

- LLC avoids needless snoops
“upwards”

27

Slice: 3 Subslices Each Slice: 3 x 8 = 24 EU’s
• 3x8x7 = 168 HW threads

• 3x8x7xSIMD32 = 5376 kernel insts

j Dedicated interface for every
sampler & data port

k Level-3 (L3) Data Cache:

• Typically 768KB / slice in multiple
banks, (allocation sizes are driver
reconfigurable)

• 64 byte cachelines

• Monolithic, but distributed cache

• 64 bytes/cycle read & write

• Scalable fabric for larger designs

l Shared Local Memory:

• 64 KB / subslice

• More highly banked than rest of L3

m Hardware Barriers, 32bit atomics

j

k

m l

28

Subslice: An Array of 8 EU’s
Each: Subslice

j Eight Execution Units

k Local Thread Dispatcher & Inst $

l Texture/Image Sampler Unit:

• Includes dedicated L1 & L2 caches

• Dedicated logic for dynamic texture
decompression, texel filtering, texel
addressing modes

• 64 Bytes/cycle read bandwidth

m Data Port:

• General purpose load/store S/G Mem unit

• Memory request coalescence

• 64 Bytes/cycle read & write bandwidth

j

k

l m

29

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

30

Subslice: An Array of 8 EU’s
Each: Subslice

j Eight Execution Units

k Local Thread Dispatcher & Inst $

l Texture/Image Sampler Unit:

• Includes dedicated L1 & L2 caches

• Dedicated logic for dynamic texture
decompression, texel filtering, texel
addressing modes

• 64 Bytes/cycle read bandwidth

m Data Port:

• General purpose load/store S/G Mem unit

• Memory request coalescence

• 64 Bytes/cycle read & write bandwidth

j

k

l m

31

EU: The Execution Unit j Gen9: Seven hardware threads per EU

k 128 “GRF” registers per thread

• 4K registers/thread or 28K/EU

l Each “GRF” register :

• 32 bytes wide

- Eight: 32b floats or 32b integers

- Sixteen: 16b half-floats or 16b shorts

• Byte addressable

m Architecture Registers per thread:

• Program Counters

• Accumulators

• Index & predicate registers

jkl m
R0… …R127

32

EU: Instructions & FPUs j Instructions:
• 1 or 2 or 3 src registers, 1 dst register
• Instructions are variable width SIMD.
• Logically programmable as 1, 2, 4, 8, 16, 32

wide SIMD
• SIMD width can change back to back w/o

penalty
• Optimize register footprint, compute density

k 2 Arithmetic, Logic, Floating-Pt Units

• Physically 4-wide SIMD, 32-bit lanes

lMin FPU instruction latency is 2 clocks
• SIMD-1, 2, 4, 8 float ops: 2 clocks
• SIMD-16 float ops: 4 clocks
• SIMD-32 float ops: 8 clocks

FPUs are fully pipelined across threads:
instructions complete every cycle.

jkl

33

EU: Universal I/O Messages

The Messaging Unit

j Send is the universal I/O instruction

k Many send message types:

• Mem stores/reads are messages

• Mem scatter/gathers are messages

• Texture Sampling is a message with u,v,w
coordinates per SIMD lane

• Messages used for synchronization, atomic
operations, fences etc.

j

k

3434

Gen ISA overview
• (f0.0) add (16|M0) [(lt)f0.0] (sat)r10.0<1>:f -r12.0<0;1,0>:f 3.14159:f

• Predication

- Selectively disables individual lanes for a single instruction based on flag
register

- Predication and-ed with execution mask

• Execution mask

- Implicitly predicates instruction execution (can override and make all channels
execute)

• Flag (condition) modifier

- Like flag register in CPU, but we must explicitly set it

• Saturation / Source Modifiers

- Saturation clamps arithmetic to destination type

- Source modifier: negation or absolute value of src input

3535

Instruction opcodes

• Arithmetic

 ADD, MUL, MAD, MAC, DP2, DP3, DP4, . . .

• Logic

 AND, OR, XOR, NOT, SHR, SHL

• Math unit

 Opcode: INV, LOG, EXP, SQRT, RSQ, POW, SIN, COS, INT DIV

• Control flow

 IF, ELSE, ENDIF, WHILE, CONTINUE, BREAK, JMPI, RET

• Message

 SEND // sampler, load/store, atomic

• MISC

 MOV, SEL, PLN, WAIT, FRC, . . .

3636

Supported Data Types

General
UB – unsigned byte integer (8-bits)
B – signed byte integer
UW – unsigned word integer (16-bits)
W – signed word integer
UD – unsigned double-word integer (32-bits)
D – signed double-word integer
UQ – unsigned quad-word integer
Q – signed quad-word integer
HF – half float (IEEE-754 16-bit half precision)
F – float (IEEE-754 32-bit single precision)
DF – Double float (IEEE-754 64-bit double precision)

Special for immediates
UV – 8-wide vector integer imm (4-bit unsigned)
V – 8-wide vector integer imm (4-bit signed)
VF – 4-wide vector float imm (8-bit floats)

3737

AOS and SOA

AOS — Array of Structure

Register 0

Register 1

Register 2

Register 3

Vector 0

Vector 1

Vector 2

Vector 3

SOA — Structure of Array

V
e
c
to

r 0

V
e
c
to

r 1

V
e
c
to

r 2

V
e
c
to

r 3

X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

XYZW

XYZW

XYZW

XYZW

Transpose

Examples:
For Vertex Shader, Geometric Shader
where XYZW are the coordinates

Examples:
For Pixel Shader where XYZW
are the color components RGBA

3838

SIMD16/SIMD8 Example 1

r14

r18

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

r4YY YY YY YY

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f {Compr} // dst.x=src0.y+src1.z

r15

r19

r5

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

YY YY YY YY

Equivalent to two SIMD8 instructions
add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f
add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {Q2}

3939

SIMD16/SIMD8 Example 2

Equivalent to two SIMD8 instructions
add (8) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f
add (8) r19<1>:f r2.1<0;1,0>:f r15<8;8,1>:f {Q2}

r14

r18

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

r2ZW XY

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr} // dst.x=src0.y+src1.z

r15

r19

r3

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

ZW XY

4040

SIMD4 Example

r2

r3

ZW XY ZW XY

ZW XY

255 0

add (4) r3<4>.xyz:f r2.0<4>.yzwx:f r2.4<4>.zwxy:f

4141

SIMD4x2 Example 2

<0> indicates that next group of 4 stays the
same

r3

r4

ZW XY ZW XY

ZW XY ZW XY

255 0

r2ZW XY ZW XY

add (8) r4<4>.xyz:f r2<0>.yzwx:f r3<4>.zwxy:f

4242

Gen Register Files
Support logical register files

General register file (GRF). General read/write

Architecture register file (ARF)

Immediates

ARF is a collection of architecture registers
null – Null register

a0-15 – Address (index) registers. Indexing GRF

acc0-1 – Accumulator registers. Higher precision

f0.0-1.1 – Flag registers. Flow control/predication

sp – Stack Pointer register

sr# – Status registers. Read-only status

cr# – Control registers. Debug and other controls

n# – Notification registers. IPC (Thread-thread comm through GW)

ip – Instruction Pointer register

tdr# – Thread dependency registers. Non-blocking scoreboard

tm0 – Time stamp register.

dbg0 – Debug register

4343

GRF - General Register File

Unique for each thread instance
4KB for each thread instances on an EU

Un-initialized

Logically organized as several banks

v2r1w 8T SRAM EBB

Organized as bundles of 32 registers
No read conflict for different bundles.

Co-issued threads will never have conflicts.

Can be preloaded with push data from URB.

I/O Messages can be sent/received directly from GRFs.

Supports indexed addressing and regioning

4444

ARF - Architecture RegFile 1
Accumulator Registers

Two accumulator supporting compressed instructions

Higher precision and lower latency for back2back MAC
Very important for 3D and DSP applications

4545

EU - Sequence of Events

Thread Dispatching from TD

EU receives IP/Mask/State from transparent header

Meanwhile payload is also loaded in GRF from URB

Instruction Fetch starts after transparent header

Thread Control starts after thread becomes valid

Thread Load and Instruction queue empty are the early
dependencies

Once instruction comes by from IC, dependency check/set starts off

Instructions with no dependency will be sent to Execution Queue

Instructions with dependency will be held until cleared

Thread Arbiter picks instructions from non-empty instruction
queues and sends to the 4 execution pipelines

4646

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

EU Pipeline

47

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Instruction Queue
2 Cache Line (8 x 128bit) IQ/Thread
Pre-fetch to minimize latency
Flush/re-fetch in jump/branch case
Arbitrates among threads

Age based priority
IQ Empty and Instr Fetch req’d

Uncompaction
64bit  128bit instruction
LUT based compaction in
Jitter/Driver
LUT based uncompaction in EU

EU Pipeline - TCunit

48

EU Pipeline - TCunit

48

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0
Data Out Bus1

…

Unified IQ block

Filters out same instruction cacheline request from
different threads that are outstanding

VALID INSTRUCTION POINTER THREAD0 THREAD1 … THREAD7

(26 bits) IQ0 IQ1 IQ0 IQ1 IQ0 IQ1
1 0x00000040 1 0 1 0 0 0
1 0x00000080 0 1 0 1 0 0
1 0x000001c0 0 0 0 0 1 0
0 .. 0 0 0 0 0 0
0 … 0 0 0 0 0 0
0 … 0 0 0 0 0 0
0 … 0 0 0 0 0 0
0 … 0 0 0 0 0 0

49

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Thread Control

Dependency check/set
GRF scoreboard
ARF scoreboard

Hazard Prevention
Data Hazard (RAW, WAW,
WAR)
Control Hazard (IP, MDQ)

EU Pipeline - TCunit

5050

Hazards - Examples
Data Hazard

RAW
add r3 r1 r2

add r4 r3 r5

WAW
send r8 r50 0x0A 0x041908FE

mov r8 r10

WAR
send r8 r50 0x0A 0x041908FE

mov r50 r10

RAW
mov f0.0 0x0f0f

(f0.0) mov r1 r2

RAW
send r5 r50 0x0A 0x041908FE

mov a0.0 0x160

add r10 r2 r[a0.0,0]

Control Hazard
IP dependency
(f0.0) if

add r3 r5 r6

endif

IQ dependency

SENDC/TDR dependency

Race between ALU0/ALU1
(WAR)

Software Override
NoDDChk and NoDDClr can
be used to over-ride H/W
protection.

Helps in avoiding artificial
thread switch and latencies

51

EU Pipeline - TCunit

51

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Thread State
Instruction Pointer
Control Register

Modes (FP denorm, Rounding)
Exception control (Jump SIP)

State Register
Masks, FFID, EUID, TID, FFTID
Priority, IEEE Exceptions

Thread Dependency Register (TDR)
Flags, Index, Stack Pointer,
Notification, TimeStamp, Debug

52
5252

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

EU Pipeline - GAunit GRF Arbiter
Breaks and sequences instruction
passes/phases through ALU0/ALU1
Arbitrates GRF source read request

ALU0, ALU1, MEU
Fixed priority MEU > ALU0 > ALU1
src0, src1/src2 are sequenced

Operand Assembly
Fetches src0, src1 and src2
A src may need multiple reads
Assembles SIMD channels for processing
Does Regioning

535353

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

ARF/GRF Writeback
Write data from ALU0/ALU1/MA
Arbitrates between ALU0, ALU1 and MA

MA is given lower priority
At max ALU0/ALU1 produces 1 GRF
in 2 clock

MA writes initial GRF payload and Shared
function return data
Higher Precision in Accumulator
Accumulator to reduce dependency

EU Pipeline - GAunit

545454

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

ALU0 PipelineALU0 Pipeline
DX11 compliant
IEEE 754 compliant FP (f16, f32, f64)
Supports ALT_MODE in f32
Separate pipes/latencies (Modular)

Integer pipe 32bit (3clk)
Floating point 32bit (3clk)
Plane/DOT Product (7clk)
Double Precision 64bit (7clk)

Different SIMD throughput
HP/Word (SIMD8)
SP/DW (SIMD4)
Plane (SIMD2)
DP/QW/DOT (SIMD1)

Shares Multiplier/Precondition logic

EU Pipeline – ALU0(FPU Unit)

555555

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

ALU1(EM) Pipeline
Consists of FPU + EM + INTDIV pipes
EM/INTDIV Latency = 7clk
Quadratic Approximation Method
1 Pass MATH instruction

LOG, EXP, SQRT, RSQ, SIN, COS
INV

2 Pass MATH instruction - POW, FDIV
Multi Pass MATH instruction - IDIV
SIMD2 throughput for 32bit
SIMD1 throughput for 64bit
IEEE 754 compliant FDIV, SQRT

Using INVM, RSQRTM, MADM
Extra precision for IEEE support

EU Pipeline – ALU1(EM Unit)

56
5656

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

JEU Pipeline
Stack/Counter based flow control
EXIP keeps track of current program flow
Keeps track of 32 individual channel flows
Unlimited nesting

Maximum of 31 channel divergence
6 Groups of JEU instructions

if/else/endif
while/continue/break
call/calla/return
halt
brc/brd
goto/join

Supports Unstructured flow control

EU Pipeline - JEUnit

5757
57

Instruction
Fetch

Control
and

Unified IQ
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF
Operand

Fetch

WB
Arbiter

IQ Read
control and
compaction

Dep
Check

and Set

Thread
State
Logic

Centralized
Bus Arbiter

JEU

Return
Data

Staging
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

EU Pipeline - MEUnit MEU Pipeline
Executes “send” instruction
Queues sends and Arbitrates to MA
Multiple Arbitration policies

HP/LP, SBUS/OBUS, Unified
Wait for grant from MA
Streams out message from GRF without bubbles
Mid Thread Preemption.

58

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

59

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

60

CPU & GPU: Same memory Controllers

• Unified memory tech
continues beyond shared
LLC

• Single DRAM memory
controller serves both CPU
& GPU streaming

- Typically configs are 2 channel
@ 8bytes/clock each

- DDR3, DDR4

• Optional: single EDRAM
controller

- Gen9: Memory side cache

61

128MB
EDRAM
128MB
EDRAM

4 CPUs & Iris Pro Graphics: 48 Eus & EDRAM

Intel® Processor Graphics

Gen8

Graphics, Compute, & Media

CPU

core

System

Agent

Memory controller I/O

CPU

core

CPU

core

CPU

core

EDRAM

Mem

Mgt

Shared
LLC

Intel® Processor Graphics

Gen8

Graphics, Compute, & Media

CPU

core

System

Agent

Memory controller I/O

CPU

core

CPU

core

CPU

core

EDRAM

Mem

Mgt

Shared
LLC

Note: Gen8 Broadwell example shown

62

Empirical View: Memory Hierarchy BW

62

GT2
L3

GT3e
L3

LLC
EDRAM DRAMDRAM

63

Memory Spaces and Memory Architecture

jCached memory hierarchy
supporting global,
constant, and image data

kShared (local) memory
reads & writes

l Image reads

mBuffer & local reads &
writes. Also image writes

 All memory caches are
globally coherent (except
for sampler & shared local
memory)

 CPU & GPU sharing at full
bandwidth of LLC

j

k

l

m

64

Shared Physical Memory:
a.k.a. Unified Memory Architecture (UMA)

• Long History: …Gen2…Gen6, Gen7.5, Gen8, Gen9
all employed shared physical memory

• No need for additional GDDR memory package
or controller. Conserves overall system memory
footprint & system power

• Intel® Processor Graphics has full performance
access to system memory

• “Zero Copy” CPU & Graphics data sharing

• Enabled by buffer allocation flags in OpenCL™,
DirectX*, etc.

Shared Physical Memory means “Zero Copy” Sharing

Unified
System
Memory

shared
buffer

65

Shared Virtual Memory
• Significant feature, new in Gen8, refined in Gen9

• Seamless sharing of pointer rich data-structures in a
shared virtual address space

• Hardware-supported byte-level CPU & GPU
coherency, cache snooping protocols…

• Spec’d Intel® VT-d IOMMU features enable
heterogeneous virtual memory, shared page tables,
page faulting.

• Facilitated by OpenCL™ 2.0 Shared Virtual Memory:

- Coarse & fine grained SVM

- CPU & GPU atomics as synchronization primitives

Shared Virtual Memory enables seamless pointer sharing

Unified
System
Memory

App data structure

Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d)

66

SVM: “Clarify Effect”

 Concurrent CPU & GPU computes
applied to a single coherent buffer

 Border pixels have different
algorithm, conditional degrades
GPU efficiency

 SVM Implementation:

CPU does border

GPU does interior, with no
conditionals

Seamless, correct sharing, even when
cachelines cross border regions

C code
(CPU)

OpenCL
code
(GPU)

Fine-grain
SVM buffer

Cacheline, potential false sharing

67

SVM: Behavior Driven Crowd Simulation
(UNC collab)

15

 A sea of autonomous “agents” from
start to goal positions. Complex
collisions and interactions in transit.
(Visualized here as pixels.)

 C pointer rich agent spatial dynamic
data structure developed for multi-
core CPU

 SVM Implementation:

 Ported quickly to GPU and SVM buffers
without data-structure re-write

 Enables both GPU & multiple CPU to
concurrently support computation on
single data-structure, plus GPU
rendering

Images courtesy of Sergey Lyalin and UNC. More info: http://gamma.cs.unc.edu/RVO2/.

68

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

69

Sobel
2048x2048 Grayscale Henri-Dog

Read Apply Sobel filter
to every pixel

Write

70

Work Item

OpenCL™ C Kernel (each work-item):

H
o
s
t

P
r
o
g
r
a
m

E
n
q
u
e
u
e

k
e
r
n
e
l

kernel void Sobel_F32
(__global float* pSrcImage,

__global float* pDstImage,
uint xStride, …)

{
float sobel= 0.0f;
uint index= 0;
uint xNDR= get_global_id(0);
uint yNDR= get_global_id(1);
index = yNDR * xStride + xNDR;

float a,b,c,d,f,g,h,i;

a = pSrcImage[index-xStride-1];
b = pSrcImage[index-xStride];
c = pSrcImage[index-xStride+1];
d = pSrcImage[index-1];
f = pSrcImage[index+1];
g = pSrcImage[index+xStride-1];
h = pSrcImage[index+xStride];
i = pSrcImage[index+xStride+1];

float xVal = a*1.0f + c*-1.0f+ d* 2.0f + f*-
2.0f+ g* 1.0f +i*-1.0f;

float yVal = a*1.0f + b*2.0f + c*1.0f + g*-
1.0f + h*-2.0f + i*-1.0f;

sobel = sqrt(xVal*xVal + yVal*yVal);

pDstImage[index] = sobel;
}

global_id
(23,0,0)

Work GroupOpenCL™ Execution Model

x dimy
 d

im

OpenCL execution model is hierarchy of iteration spaces

71

?

Gen Architecture
Execution Model

OpenCL WG’s map to EU Threads, across multiple EU’s

SIMD Compile
Model

OpenCL™ Exec
Model

72

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary

73

Summary
• Intel® Processor Graphics: 3D Rendering, Media, and Compute

• Many products, APIs, & applications using Intel® Processor Graphics for compute

• Gen9 Architecture:

- Execution Units, Slices, SubSlices, Many SoC product configs

- Layered memory hierarchy founded shared LLC.

• Shared Physical Memory, Shared Virtual Memory

- No separate discrete memory, No PCIe bus to GPU.

- SVM & real GPU/CPU cache coherency is here: use it, join us.

Intel Processor Graphics: a key platform Compute Resource

74

Intel® Processor Graphics

• These details and more available in our
architecture whitepapers:

https://software.intel.com/en-us/articles/intel-
graphics-developers-guides

Whitepaper:
The Compute Architecture of
Intel Processor Graphics Gen8

Whitepaper:
The Compute Architecture of
Intel Processor Graphics Gen9

Read our whitepapers

BACK UP

76

Legal Notices and Disclaimers

• Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences
in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit
http://www.intel.com/performance.

• Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other
countries. *Other names and brands may be claimed as the property of others.

• © 2015 Intel Corporation.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

77

