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Compute Applications

Compute Applications Optimized for Intel® Processor Graphics

“The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor 
are … allowing me to do all of this while the graphics and video 
never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe 

Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor 
are … allowing me to do all of this while the graphics and video 
never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe 

Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg

“We are very pleased that Intel is fully supporting OpenCL. 
We think there is a bright future for this technology.” Michael 

Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony* 
Optimized with OpenCL and Intel® Processor Graphics 
http://www.youtube.com/watch?v=_KHVOCwTdno

“We are very pleased that Intel is fully supporting OpenCL. 
We think there is a bright future for this technology.” Michael 

Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony* 
Optimized with OpenCL and Intel® Processor Graphics 
http://www.youtube.com/watch?v=_KHVOCwTdno

“Implementing [OpenCL] in our award-winning video editor, 
PowerDirector, has created tremendous value for our 
customers by enabling big gains in video processing speed 
and, consequently, a significant reduction in total video 
editing time.” Louis Chen, Assistant Vice President, CyberLink Corp.

“Implementing [OpenCL] in our award-winning video editor, 
PowerDirector, has created tremendous value for our 
customers by enabling big gains in video processing speed 
and, consequently, a significant reduction in total video 
editing time.” Louis Chen, Assistant Vice President, CyberLink Corp.

"Capture One Pro introduces …optimizations for Haswell, enabling 
remarkably faster interaction with and processing of RAW image files, 
providing a better experience for our quality-conscious users.”

"Capture One Pro introduces …optimizations for Haswell, enabling 
remarkably faster interaction with and processing of RAW image files, 
providing a better experience for our quality-conscious users.”

*

*

*

*

*

*

DirectX11.2 
Compute Shader
DirectX11.2 
Compute Shader*
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Processor Graphics is a Key Intel Silicon 
Component

4

Intel® 5th Gen Core™Intel 3rd Gen Core™

Intel HD 
Graphics

Intel 2nd Gen Core™

Intel HD 
Graphics

Intel® 4th Gen Core™

Intel HD 
Graphics

eDRAM

eDRAM

Processor 
Graphics Gen7

Processor 
Graphics Gen6

Processor Graphics Gen7.5 Processor Graphics Gen8

Intel Iris
Graphics

Gen9 
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Intel® Core™ i5 with Iris graphics 6100:

Intel® Processor Graphics?   
• Intel® Processor Graphics: 3D Rendering, 

Media, Display and Compute

• Discrete class performance but… integrated 
on-die for true heterogeneous computing, 
SoC power efficiency, and a fully connected 
system architecture

• Some products are near TFLOP performance

• The foundation is a highly threaded, data 
parallel compute architecture

• Today: focus on compute components of 
Intel Processor Graphics Gen9

Intel Processor Graphics is a key Compute Resource 
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Compute Programming model Support
• APIs & Languages Supported

- Microsoft* DirectX* 12 Compute Shader

 Also Microsoft C++AMP

- Google* Renderscript

- Khronos OpenCL™ 2.0

- Khronos OpenGL* 4.3 & OpenGL-ES 3.1 with GL-Compute

- Intel Extensions (e.g. VME, media surface sharing, etc.)

- Intel CilkPlus C++ compiler

• Processor Graphics OS support:

- Windows*,  Android*, MacOS*, Linux*

Intel® Processor Graphics
Supports all OS API Standards for Compute

OpenCL

DirectX12, 11.2 
Compute Shader

DirectX12, 11.2 
Compute Shader
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Apple Macbook Pro 13’’

Apple* Macbook* Pro 15’’

Apple iMac* 21.5’’
Asus Zenbook Infinity*

Gigabyte* Brix* Pro

Zotac* ZBOX* EI730

Sony* Vaio* Tap 21

JD.com – Terran Force
Clevo* Niagara*

The Graphics Architecture for many OEM DT, LT, 2:1, tablet products

Example OEM Products w/ Processor Graphics

Microsoft* Surface* Pro 4

Asus MeMO* Pad 7*

Asus* Transformer Pad*

Lenovo* Miix* 2

Toshiba* Encore* 2 Tablet
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General Purpose Compute Evolution

• Superscalar – 1990s

• Multi-core – 2000s

• Heterogeneous – 2010s+
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CPU

Super Scalar Era (1990s)

• 1st PC Example: i486 (1989)

• Exploits ILP (Instruction Level Parallelism)

• ILP limited by compiler’s ability to extract parallelism

• DLP (Data Level Parallelism) introduced: MMX SIMD instructions on Pentium in 1996

• Note: the pipelines themselves were heterogeneous (INT vs. FP)

INTINT INTINT INTINT FPFP FPFP
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Multi Core Era (2000s)

• 1st PC Example: Pentium D (2005)

• Exploits TLP (Thread Level Parallelism)

• TLP limited by Amdahl’s law, and serial nature of some routines

• Diminishing returns past 4 Cores / 8 Threads

• Homogenous cores

CPU0 CPU1 CPU2 CPU3
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Heterogeneous Computing Era (2000s+)

• Uses the most power efficient compute engine for a given job

• Maturity of domain specific computing: most noticeably the GPU 

• Continued GPU hardware and OpenCL software improvement for data parallel computing

• Technologies to simplify the programming model start to emerge: SVM (Shared Virtual 
Memory) and OS management

CPU0 CPU1

CPU2 CPU3

GPU

Media

ISP

Audio

Etc
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Who’s Better For The Job?
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Heterogeneous Systems have been broadly 
deployed in Client Computers for many years

http://images.dailytech.com http://www.gigabyte.com

• Intel 4th Generation i7 Core with Iris Pro graphics and 128MB eDRAM
• Up to 1 TFLOPS delivered when CPU and GPU is combined

• Example: Featured in Gigabyte’s Brix Pro GB-BXi7-4770R
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Example Chip Level 
Architecture:  Intel® 7th Gen 
Core™ Processor
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Complimentary Computing Engines

• Different micro-architectural approaches 

ILP
DLP
TLP

ILP

DLP
TLP

CPU GPU
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Intel Processor Core Tutorial
Microarchitecture Block Diagram

17

ALU, SIMUL, 

DIV, FP MUL

ALU, SIALU, 

FP ADD

ALU, Branch, 

FP Shuffle

Load Load

Store Address Store Address

Store 

Data
Execution Ports

32k L1 Instruction Cache

Scheduler

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

32k L1 Data Cache 

48 bytes/cycle

Allocate/Rename/RetireZeroing IdiomsLoad 
Buffe
rs

Store 
Buffe
rs

Reord
erBuff
ers

L2 Data Cache (MLC) Fill 
Buffers

Pre decode
Instruction 

Queue
Decoders

1.5k uOP cache

DecodersDecodersDecoders

Branch Pred

In 
order

Out-
of-
order

Front End 
(IA instructions  Uops)

In Order Allocation, Rename, Retirement

Out of Order “Uop” Scheduling

Data
Cache
Unit

* Adapted from ARCS001, IDF Beijing 2011. 
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Microarchitecture Highlights

• ILP: Many issue slots for OOO 
execution

• DLP: More SIMD compute 
supported by increased Cache 
bandwidth

• TLP: Up to 4 cores, 8 threads (remains the 
same)

Micro-
architecture

Instruction Set SP FLOPs per 
cycle per core

DP FLOPs per 
cycle per core

L1 Cache 
Bandwidth 
(Bytes/cycle)

L2 Cache 
Bandwidth 
(Bytes/cycle)

Nehalem SSE 

(128-bits)

8 4 32 (16B read + 16B 
write)

32

Sandy Bridge AVX 

(256-bits)

16 8 48 (32B read + 16B 
write)

32

Haswell AVX2 

(256-bits)

32 16 96 (64B read + 32B 
write)

64

U
n

if
ie

d
 R

e
se

rv
a

ti
o

n
 S

ta
ti

o
n

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Integer ALU, FMA, FP Multiply, Divide, 
Branch, SSE Integer ALU/Integer 

Multiply/Logicals/Shifts

Integer ALU, FMA, FP Add/Multiply, Slow 
Integer, SSE Integer ALU,/Logicals

Load/Store Address

Load/Store Address

Store Data

Integer ALU, FP/INT Shuffle, SSE 
Integer ALU/Logicals

Integer ALU, Branch

Store Address
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Complimentary Computing Engines

• Different micro-architectural approaches 

ILP
DLP
TLP

ILP

DLP
TLP

CPU GPU
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DLP and TLP in Processor Graphics

DLP: 

• Large register files reduce cache and memory 
burden and improve compute power efficiency

TLP: 

• Many hardware thread contexts per core (EU) 
and many cores

• Highly efficient thread generation, dispatch, 
monitoring mechanism

ILP

DLP
TLP

GPU



21

Agenda
1. Introduction (Jason)

2. Compute Architecture Evolution (Jason)

3. Chip Level Architecture (Jason)
 Subslices, slices, products

4. Gen Compute Architecture (Maiyuran)
 Execution units

5. Instruction Set Architecture (Ken)

6. Memory Sharing Architecture (Jason)

7. Mapping Programming Models to Architecture (Jason)

8. Summary



22

Intel® Core™ i7 processor 6700K (desktop) 

22

Processor Graphics 
scales to many SoC 
Chip products, wide 
range product 
segments:

Server, desktop, laptop, 
convertible, tablet, phone
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Multi-slice Product Configuration Examples

24 EUs 48 EUs12 EUs
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3 Slice Product Configuration

24

72 EUs
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Chip Level Architecture
• Many different processor 

products, with different 
processor graphics configs

• Multiple CPU cores, shared 
LLC, system agent

• Multiple clock domains, 
target power where it’s 
needed

New!
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Chip Level Architecture • Ring Interconnect:

- Dedicated “stops”: each CPU Core, 
Graphics, & System Agent

- Bi-directional, 32 Bytes wide

• Shared Last Level Cache (LLC)

- Both GPU & CPU cores

- 2-8MB, depending on product

- Inclusive 

• Optimized for CPU & GPU 
coherency

- Address hashing to multiple 
concurrent LLC request queues

- LLC avoids needless snoops 
“upwards”
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Slice:  3 Subslices Each Slice: 3 x 8 = 24 EU’s
• 3x8x7 = 168 HW threads

• 3x8x7xSIMD32 = 5376 kernel insts

j Dedicated interface for every 
sampler & data port

k Level-3 (L3) Data Cache:

• Typically 768KB / slice in multiple 
banks, (allocation sizes are driver 
reconfigurable)

• 64 byte cachelines

• Monolithic, but distributed cache 

• 64 bytes/cycle read & write

• Scalable fabric for larger designs

l Shared Local Memory:

• 64 KB / subslice

• More highly banked than rest of L3

m Hardware Barriers, 32bit atomics

j

k

m l
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Subslice: An Array of 8 EU’s
Each: Subslice

j Eight Execution Units

k Local Thread Dispatcher & Inst $

l Texture/Image Sampler Unit:

• Includes dedicated L1 & L2 caches

• Dedicated logic for dynamic texture 
decompression, texel filtering, texel
addressing modes

• 64 Bytes/cycle read bandwidth

m Data Port:

• General purpose load/store S/G Mem unit

• Memory request coalescence

• 64 Bytes/cycle read & write bandwidth

j

k

l m
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Subslice: An Array of 8 EU’s
Each: Subslice

j Eight Execution Units

k Local Thread Dispatcher & Inst $

l Texture/Image Sampler Unit:

• Includes dedicated L1 & L2 caches

• Dedicated logic for dynamic texture 
decompression, texel filtering, texel
addressing modes

• 64 Bytes/cycle read bandwidth

m Data Port:

• General purpose load/store S/G Mem unit

• Memory request coalescence

• 64 Bytes/cycle read & write bandwidth

j

k

l m
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EU: The Execution Unit j Gen9: Seven hardware threads per EU

k 128 “GRF” registers per thread

• 4K registers/thread or 28K/EU

l Each “GRF” register :

• 32 bytes wide

- Eight: 32b floats or 32b integers

- Sixteen: 16b half-floats or 16b shorts

• Byte addressable

m Architecture Registers per thread:

• Program Counters

• Accumulators

• Index & predicate registers

jkl m
R0… …R127
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EU: Instructions & FPUs j Instructions:
• 1 or 2 or 3 src registers, 1 dst register
• Instructions are variable width SIMD.  
• Logically programmable as 1, 2, 4, 8, 16, 32 

wide SIMD
• SIMD width can change back to back w/o 

penalty
• Optimize register footprint, compute density

k 2 Arithmetic, Logic, Floating-Pt Units

• Physically 4-wide SIMD, 32-bit lanes

lMin FPU instruction latency is 2 clocks
• SIMD-1, 2, 4, 8 float ops: 2 clocks
• SIMD-16 float ops: 4 clocks
• SIMD-32 float ops: 8 clocks

FPUs are fully pipelined across threads: 
instructions complete every cycle.

jkl
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EU: Universal I/O Messages

The Messaging Unit

j Send is the universal I/O instruction

k Many send message types:

• Mem stores/reads are messages

• Mem scatter/gathers are messages

• Texture Sampling is a message with u,v,w
coordinates per SIMD lane

• Messages used for synchronization, atomic 
operations, fences etc.

j

k
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Gen ISA overview
• (f0.0) add (16|M0) [(lt)f0.0] (sat)r10.0<1>:f -r12.0<0;1,0>:f  3.14159:f

• Predication

- Selectively disables individual lanes for a single instruction based on flag 
register

- Predication and-ed with execution mask 

• Execution mask

- Implicitly predicates instruction execution (can override and make all channels 
execute)

• Flag (condition) modifier

- Like flag register in CPU, but we must explicitly set it

• Saturation / Source Modifiers

- Saturation clamps arithmetic to destination type

- Source modifier: negation or absolute value of src input
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Instruction opcodes 

• Arithmetic 

 ADD, MUL, MAD, MAC, DP2, DP3, DP4, . . .

• Logic

 AND, OR, XOR, NOT, SHR, SHL

• Math unit

 Opcode: INV, LOG, EXP, SQRT, RSQ, POW, SIN, COS, INT DIV

• Control flow

 IF, ELSE, ENDIF, WHILE, CONTINUE, BREAK, JMPI, RET

• Message

 SEND  // sampler, load/store, atomic

• MISC

 MOV, SEL, PLN, WAIT, FRC, . . .
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Supported Data Types

General
UB  – unsigned byte integer (8-bits)
B     – signed byte integer 
UW – unsigned word integer (16-bits)
W    – signed word integer 
UD  – unsigned double-word integer (32-bits)
D     – signed double-word integer
UQ     – unsigned quad-word integer
Q     – signed quad-word integer 
HF     – half float (IEEE-754 16-bit half precision)
F     – float (IEEE-754 32-bit single precision)
DF     – Double float (IEEE-754 64-bit double precision)

Special for immediates
UV     – 8-wide vector integer imm (4-bit unsigned)
V     – 8-wide vector integer imm (4-bit signed)
VF   – 4-wide vector float imm (8-bit floats)
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AOS and SOA

AOS — Array of Structure

Register 0

Register 1

Register 2

Register 3

Vector 0

Vector 1

Vector 2

Vector 3

SOA — Structure of Array

V
e
c
to

r 0

V
e
c
to

r 1

V
e
c
to

r 2

V
e
c
to

r 3

X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

XYZW

XYZW

XYZW

XYZW

Transpose

Examples:
For Vertex Shader, Geometric Shader
where XYZW are the coordinates

Examples:
For Pixel Shader where XYZW 
are the color components RGBA
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SIMD16/SIMD8 Example 1

r14

r18

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

r4YY YY YY YY

add (16)  r18<1>:f  r4<8;8,1>:f  r14<8;8,1>:f  {Compr}      // dst.x=src0.y+src1.z

r15

r19

r5

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

YY YY YY YY

Equivalent to two SIMD8 instructions
add (8)    r18<1>:f    r4<8;8,1>:f    r14<8;8,1>:f 
add (8)    r19<1>:f    r5<8;8,1>:f    r15<8;8,1>:f    {Q2}
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SIMD16/SIMD8 Example 2

Equivalent to two SIMD8 instructions
add (8)    r18<1>:f    r2.1<0;1,0>:f    r14<8;8,1>:f 
add (8)    r19<1>:f    r2.1<0;1,0>:f    r15<8;8,1>:f    {Q2}

r14

r18

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

r2ZW XY

add (16) r18<1>:f  r2.1<0;1,0>:f  r14<8;8,1>:f {Compr} // dst.x=src0.y+src1.z

r15

r19

r3

ZZ ZZ ZZ ZZ

XX XX XX XX

255 0

ZW XY
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SIMD4 Example

r2

r3

ZW XY ZW XY

ZW XY

255 0

add (4) r3<4>.xyz:f r2.0<4>.yzwx:f r2.4<4>.zwxy:f
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SIMD4x2 Example 2

<0> indicates that next group of 4 stays the 
same

r3

r4

ZW XY ZW XY

ZW XY ZW XY

255 0

r2ZW XY ZW XY

add (8)    r4<4>.xyz:f    r2<0>.yzwx:f    r3<4>.zwxy:f
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Gen Register Files
Support logical register files

General register file (GRF). General read/write

Architecture register file (ARF)

Immediates

ARF is a collection of architecture registers
null – Null register

a0-15 – Address (index) registers. Indexing GRF

acc0-1 – Accumulator registers. Higher precision

f0.0-1.1 – Flag registers. Flow control/predication

sp – Stack Pointer register

sr# – Status registers. Read-only status

cr# – Control registers. Debug and other controls

n#  – Notification registers. IPC (Thread-thread comm through GW)

ip – Instruction Pointer register

tdr#  – Thread dependency registers. Non-blocking scoreboard

tm0 – Time stamp register.

dbg0 – Debug register



4343

GRF - General Register File

Unique for each thread instance
4KB  for each thread instances on an EU

Un-initialized

Logically organized as several banks

v2r1w 8T SRAM EBB

Organized as bundles of 32 registers
No read conflict for different bundles.

Co-issued threads will never have conflicts.

Can be preloaded with push data from URB.

I/O Messages can be sent/received directly from GRFs.

Supports indexed addressing and regioning
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ARF - Architecture RegFile 1
Accumulator Registers

Two accumulator supporting compressed instructions

Higher precision and lower latency for back2back MAC
Very important for 3D and DSP applications
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EU - Sequence of Events

Thread Dispatching from TD

EU receives IP/Mask/State from transparent header

Meanwhile payload is also loaded in GRF from URB

Instruction Fetch starts after transparent header

Thread Control starts after thread becomes valid

Thread Load and Instruction queue empty are the early 
dependencies

Once instruction comes by from IC, dependency check/set starts off

Instructions with no dependency will be sent to Execution Queue

Instructions with dependency will be held until cleared

Thread Arbiter picks instructions from non-empty instruction 
queues and sends to the 4 execution pipelines
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

EU Pipeline
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Instruction Queue
2 Cache Line (8 x 128bit) IQ/Thread
Pre-fetch to minimize latency
Flush/re-fetch in jump/branch case
Arbitrates among threads

Age based priority
IQ Empty and Instr Fetch req’d

Uncompaction
64bit  128bit instruction
LUT based compaction in 
Jitter/Driver
LUT based uncompaction in EU

EU Pipeline - TCunit
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EU Pipeline - TCunit
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0
Data Out Bus1

…

Unified IQ block

Filters out same instruction cacheline request from 
different threads that are outstanding

VALID INSTRUCTION POINTER THREAD0 THREAD1 … THREAD7

(26 bits) IQ0 IQ1 IQ0 IQ1 IQ0 IQ1
1 0x00000040 1 0 1 0 .. .. 0 0
1 0x00000080 0 1 0 1 .. .. 0 0
1 0x000001c0 0 0 0 0 .. .. 1 0
0 .. 0 0 0 0 .. .. 0 0
0 … 0 0 0 0 .. .. 0 0
0 … 0 0 0 0 .. .. 0 0
0 … 0 0 0 0 .. .. 0 0
0 … 0 0 0 0 .. .. 0 0
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Thread Control

Dependency check/set
GRF scoreboard
ARF scoreboard

Hazard Prevention
Data Hazard (RAW, WAW, 
WAR)
Control Hazard (IP, MDQ)

EU Pipeline - TCunit
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Hazards - Examples
Data Hazard

RAW
add r3 r1 r2

add r4 r3 r5

WAW
send r8 r50 0x0A 0x041908FE

mov r8 r10

WAR
send r8 r50 0x0A 0x041908FE

mov r50 r10

RAW
mov f0.0 0x0f0f

(f0.0) mov r1 r2

RAW
send r5 r50 0x0A 0x041908FE

mov a0.0 0x160

add r10 r2 r[a0.0,0]

Control Hazard
IP dependency
(f0.0) if

add r3 r5 r6

endif

IQ dependency

SENDC/TDR dependency

Race between ALU0/ALU1 
(WAR)

Software Override
NoDDChk and NoDDClr can 
be used to over-ride H/W 
protection.

Helps in avoiding artificial 
thread switch and latencies
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EU Pipeline - TCunit
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0

Data Return Bus1

Data Out Bus0

Data Out Bus1

…

Thread State
Instruction Pointer
Control Register 

Modes (FP denorm, Rounding)
Exception control (Jump SIP)

State Register
Masks, FFID, EUID, TID, FFTID
Priority, IEEE Exceptions

Thread Dependency Register (TDR)
Flags, Index, Stack Pointer, 
Notification, TimeStamp, Debug
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Instruction 
Fetch 

Control 
and 

Unified IQ 
Block

Thread 1

Thread 2

Thread N

Arbiters

ALU0

ALU1

Send

JEU

GRF

GRF

GRF 
Operand 

Fetch

WB 
Arbiter

IQ Read 
control and 
compaction

Dep 
Check 

and Set

Thread 
State 
Logic

Centralized
Bus Arbiter

JEU

Return
Data 

Staging 
Buffer

X
B
A
R

ALU0

ALU1

Data Return Bus0
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EU Pipeline - GAunit GRF Arbiter
Breaks and sequences instruction 
passes/phases through ALU0/ALU1
Arbitrates GRF source read request

ALU0, ALU1, MEU
Fixed priority MEU > ALU0 > ALU1
src0, src1/src2 are sequenced

Operand Assembly
Fetches src0, src1 and src2
A src may need multiple reads
Assembles SIMD channels for processing
Does Regioning
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…

ARF/GRF Writeback
Write data from ALU0/ALU1/MA
Arbitrates between ALU0, ALU1 and MA

MA is given lower priority
At max ALU0/ALU1 produces 1 GRF 
in 2 clock

MA writes initial GRF payload and Shared 
function return data
Higher Precision in Accumulator
Accumulator to reduce dependency

EU Pipeline - GAunit
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ALU0 PipelineALU0 Pipeline
DX11 compliant
IEEE 754 compliant FP (f16, f32, f64)
Supports ALT_MODE in f32
Separate pipes/latencies  (Modular)

Integer pipe 32bit (3clk)
Floating point 32bit (3clk)
Plane/DOT Product (7clk)
Double Precision 64bit (7clk)

Different SIMD throughput
HP/Word (SIMD8)
SP/DW (SIMD4)
Plane (SIMD2)
DP/QW/DOT (SIMD1)

Shares Multiplier/Precondition logic

EU Pipeline – ALU0(FPU Unit)
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…

ALU1(EM) Pipeline
Consists of FPU + EM + INTDIV pipes
EM/INTDIV Latency = 7clk
Quadratic Approximation Method
1 Pass MATH instruction

LOG, EXP, SQRT, RSQ, SIN, COS
INV

2 Pass MATH instruction - POW, FDIV
Multi Pass MATH instruction - IDIV
SIMD2 throughput for 32bit
SIMD1 throughput for 64bit
IEEE 754 compliant FDIV, SQRT

Using INVM, RSQRTM, MADM
Extra precision for IEEE support

EU Pipeline – ALU1(EM Unit)
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JEU Pipeline
Stack/Counter based flow control
EXIP keeps track of current program flow
Keeps track of 32 individual channel flows
Unlimited nesting

Maximum of 31 channel divergence
6 Groups of JEU instructions 

if/else/endif
while/continue/break
call/calla/return
halt
brc/brd
goto/join

Supports Unstructured flow control

EU Pipeline - JEUnit
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EU Pipeline - MEUnit MEU Pipeline
Executes “send” instruction
Queues sends and Arbitrates to MA
Multiple Arbitration policies

HP/LP, SBUS/OBUS, Unified
Wait for grant from MA
Streams out message from GRF without bubbles
Mid Thread Preemption.
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CPU & GPU: Same memory Controllers

• Unified memory tech 
continues beyond shared 
LLC

• Single DRAM memory 
controller serves both CPU 
& GPU streaming

- Typically configs are 2 channel 
@ 8bytes/clock each

- DDR3, DDR4

• Optional: single EDRAM 
controller

- Gen9: Memory side cache
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128MB  
EDRAM
128MB  
EDRAM

4 CPUs & Iris Pro Graphics: 48 Eus & EDRAM

Intel® Processor Graphics

Gen8

Graphics, Compute, & Media

CPU 

core

System

Agent

Memory controller I/O

CPU 

core

CPU 

core

CPU 

core

EDRAM

Mem

Mgt

Shared
LLC 

Intel® Processor Graphics

Gen8

Graphics, Compute, & Media

CPU 

core

System

Agent

Memory controller I/O

CPU 

core

CPU 

core

CPU 

core

EDRAM

Mem

Mgt

Shared
LLC 

Note: Gen8 Broadwell example shown
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Empirical View: Memory Hierarchy BW

62

GT2
L3

GT3e
L3

LLC
EDRAM DRAMDRAM
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Memory Spaces and Memory Architecture

jCached memory hierarchy 
supporting  global, 
constant, and image data 

kShared (local) memory 
reads & writes

l Image reads

mBuffer & local reads & 
writes.  Also image writes

 All memory caches are 
globally coherent (except 
for sampler & shared local 
memory)

 CPU & GPU sharing at full 
bandwidth of LLC

j

k

l

m
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Shared Physical Memory: 
a.k.a. Unified Memory Architecture (UMA)

• Long History: …Gen2…Gen6, Gen7.5, Gen8, Gen9 
all employed shared physical memory

• No need for additional GDDR memory package 
or controller. Conserves overall system memory 
footprint & system power

• Intel® Processor Graphics has full performance 
access to system memory

• “Zero Copy” CPU & Graphics data sharing

• Enabled by buffer allocation flags in OpenCL™, 
DirectX*, etc.

Shared Physical Memory means “Zero Copy” Sharing

Unified
System
Memory

shared
buffer
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Shared Virtual Memory 
• Significant feature, new in Gen8, refined in Gen9 

• Seamless sharing of pointer rich data-structures in a 
shared virtual address space

• Hardware-supported byte-level CPU & GPU 
coherency, cache snooping protocols…

• Spec’d Intel® VT-d IOMMU features enable 
heterogeneous virtual memory, shared page tables, 
page faulting.

• Facilitated by OpenCL™ 2.0 Shared Virtual Memory:

- Coarse & fine grained SVM

- CPU & GPU atomics as synchronization primitives

Shared Virtual Memory enables seamless pointer sharing

Unified
System
Memory

App data structure

Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d)
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SVM: “Clarify Effect”

 Concurrent CPU & GPU computes 
applied to a single coherent buffer

 Border pixels have different 
algorithm, conditional degrades 
GPU efficiency

 SVM Implementation: 

CPU does border

GPU does interior, with no 
conditionals

Seamless, correct sharing, even when 
cachelines cross border regions

C code 
(CPU)

OpenCL 
code 
(GPU)

Fine-grain 
SVM buffer

Cacheline, potential false sharing
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SVM: Behavior Driven Crowd Simulation 
(UNC collab)

15

 A sea of autonomous “agents” from 
start to goal positions.  Complex 
collisions and interactions in transit.  
(Visualized here as pixels.)

 C pointer rich agent spatial dynamic 
data structure developed for multi-
core CPU

 SVM Implementation:

 Ported quickly to GPU and SVM buffers 
without data-structure re-write

 Enables both GPU & multiple CPU to 
concurrently support computation on 
single data-structure, plus GPU 
rendering

Images courtesy of Sergey Lyalin and UNC. More info: http://gamma.cs.unc.edu/RVO2/. 
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Sobel
2048x2048 Grayscale Henri-Dog

Read Apply Sobel filter
to every pixel

Write
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Work Item

OpenCL™ C Kernel (each work-item):

H
o
s
t
 
P
r
o
g
r
a
m

E
n
q
u
e
u
e
 

k
e
r
n
e
l

kernel void Sobel_F32 
( __global float* pSrcImage, 

__global float* pDstImage, 
uint xStride, …)

{
float sobel= 0.0f; 
uint index= 0;
uint xNDR= get_global_id(0); 
uint yNDR= get_global_id(1); 
index = yNDR * xStride + xNDR;

float a,b,c,d,f,g,h,i;

a = pSrcImage[index-xStride-1];
b = pSrcImage[index-xStride];
c = pSrcImage[index-xStride+1];
d = pSrcImage[index-1]; 
f = pSrcImage[index+1];
g = pSrcImage[index+xStride-1];
h = pSrcImage[index+xStride];
i = pSrcImage[index+xStride+1];

float xVal = a*1.0f + c*-1.0f+ d* 2.0f + f*-
2.0f+ g* 1.0f +i*-1.0f;

float yVal = a*1.0f + b*2.0f + c*1.0f + g*-
1.0f + h*-2.0f + i*-1.0f;

sobel = sqrt(xVal*xVal + yVal*yVal);

pDstImage[index] = sobel;
}

global_id
(23,0,0)

Work GroupOpenCL™ Execution Model

x dimy
 d

im

OpenCL execution model is hierarchy of iteration spaces
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?

Gen Architecture 
Execution Model

OpenCL WG’s map to EU Threads, across multiple EU’s

SIMD Compile 
Model

OpenCL™ Exec
Model
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Summary
• Intel® Processor Graphics: 3D Rendering, Media, and Compute

• Many products, APIs, & applications using Intel® Processor Graphics for compute

• Gen9 Architecture:

- Execution Units, Slices, SubSlices, Many SoC product configs

- Layered memory hierarchy founded shared LLC.

• Shared Physical Memory, Shared Virtual Memory

- No separate discrete memory, No PCIe bus to GPU.

- SVM & real GPU/CPU cache coherency is here: use it, join us.

Intel Processor Graphics: a key platform Compute Resource 
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Intel® Processor Graphics

• These details and more available in our 
architecture whitepapers:

https://software.intel.com/en-us/articles/intel-
graphics-developers-guides

Whitepaper:
The Compute Architecture of
Intel Processor Graphics Gen8

Whitepaper:
The Compute Architecture of
Intel Processor Graphics Gen9

Read our whitepapers
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Legal Notices and Disclaimers

• Intel technologies’ features and benefits depend on system configuration and may require 
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or 
retailer.

• No computer system can be absolutely secure. 
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http://www.intel.com/performance.

• Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other 
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